大数据分析可视化Excel15种初级图表

2022/9/2 来源:不详

相同的数据,使用不同的图表进行体现,效果也会千差万别,那么我们应该如何正确选择,才能让图表的作用发挥到极致呢?

Excel中图表类型有很多,今天小易重点为大家讲解Excel中15种图表类型和应用,关于图表的详细制作方法先不做过多讲解。

折线图

折线图用于显示数据在一个连续的时间间隔或者时间跨度上的变化,它的特点是反映事物随时间或有序类别而变化的趋势。

在折线图中,数据是递增还是递减、增减的速率、增减的规律(周期性、螺旋性等)、峰值等特征都可以清晰地反映出来。

所以,折线图常用来分析数据随时间的变化趋势,也可用来分析多组数据随时间变化的相互作用和相互影响。例如可用来分析某类商品或是某几类相关的商品随时间变化的销售情况,从而进一步预测未来的销售情况。

适合的场景:不同月份之间的温度变化。

不适合的场景:

当水平轴的数据类型为无序的分类或者垂直轴的数据类型为连续时间时,不适合使用折线图。

我们以一个不同游戏类型的销量对比的场景为例,对于表示分类对比的数据时,我们更应该使用柱状图,而不是折线图。

柱状图和条形图

柱状图,使用垂直或水平的柱子显示类别之间的数值比较。其中一个轴表示需要对比的分类维度,另一个轴代表相应的数值。

柱状图有别于直方图,柱状图无法显示数据在一个区间内的连续变化趋势。柱状图描述的是分类数据,回答的是每一个分类中“有多少”这个问题。

适合的场景:游戏销量的图表,展示不同游戏类型的销量对比。

不适合的场景:某股票在年9月份整个月的每日的价格走势。随着有序的时间变化的数值趋势,更适合使用折线图或者面积图。

饼图

饼图广泛地应用在各个领域,用于表示不同分类的占比情况,通过弧度大小来对比各种分类。饼图通过将一个圆饼按照分类的占比划分成多个区块,整个圆饼代表数据的总量,每个区块(圆弧)表示该分类占总体的比例大小,所有区块(圆弧)的加和等于%。

饼图可以很好地帮助用户快速了解数据的占比分配。

它的主要缺点是:

饼图不适用于多分类的数据,原则上一张饼图不可多于9个分类,因为随着分类的增多,每个切片就会变小,最后导致大小区分不明显,每个切片看上去都差不多大小,这样对于数据的对比是没有什么意义的。所以饼图不适合用于数据量大且分类很多的场景。

相比于具备同样功能的其他图表(比如百分比柱状图、环图),饼图需要占据更大的画布空间。

很难进行多个饼图之间的数值比较。

尽管如此,在一张饼图上比较一个数据系列上各个分类的大小占比还是很方便高效的。

适合的场景:某班级的男女性别比例。

不适合的场景:各省份人口占比,因为这张图上包含的分类过多,就出现了简介中提到的问题,很难清晰对比各个省份的人口数据占比情况,所以这种情况下,我们推荐使用横向柱状图。

面积图

面积图又叫区域图。它是在折线图的基础之上形成的,它将折线图中折线与自变量坐标轴之间的区域使用颜色或者纹理填充,这样一个填充区域我们叫做面积,颜色的填充可以更好的突出趋势信息,需要注意的是颜色要带有一定的透明度,透明度可以很好的帮助使用者观察不同序列之间的重叠关系,没有透明度的面积会导致不同序列之间相互遮盖减少可以被观察到的信息。

和折线图一样,面积图也用于强调数量随时间而变化的程度,也可用于引起人们对总值趋势的注意。他们最常用于表现趋势和关系,而不是传达特定的值。

适合的场景:某公司在Florida、Texas、Nevada三个城市年至年的收益情况,通过垂直坐标轴的正负方向很形象地表现了公司的盈利亏损情况。

不适合的场景:不同分类之间的数值比较,下图是不同游戏类型的销售情况。

XY散点图

XY散点图可用来说明一组或多组变量间的相互关系,其每一个数据点都由两个分别对应于坐标轴的变量构成。每一组数据构成一个数据系列。XY散点图的数据点一般呈簇状不规则分布,可用线段将数据点连接在一起,也可仅用数据点来说明数据的变化趋势、离散程度以及不同系列数间的相关性(正相关、负相关或不相关)。

散点图通常用于显示和比较数值,当在不考虑时间的情况下,比较大量数据点时,可以使用散点图,散点图中包含的数据越多,比较的效果就越好。

适合的场景:“身体脂肪百分比与BMI”的散点图,以评估两个变量之间的关系。BMI和身体脂肪数据的散点图显示了两个变量之间的强度很大的正线性关系。

地图

地图,作为表现跨区域数据的最佳方式,一直是政府和企业高级管理人员钟爱的数据表现方式。地图可制作气泡地图、统计地图、热力地图等等。

以气泡地图为例,气泡地图其实就是气泡图和地图的结合,我们以地图为背景,在上面绘制气泡。我们将圆(这里我们叫它气泡)展示在一个指定的地理区域内,气泡的面积代表了这个数据的大小。

比分级统计图更适用于比较带地理信息的数据的大小。它的主要缺点是当地图上的气泡过多过大时,气泡间会相互遮盖而影响数据展示,所以在绘制时需要考虑这点。

适合的场景:各个国家遭受的恐怖袭击次数展示。如图,可以看出伊拉克遭受的恐怖袭击次数最多,并且恐怖袭击主要集中在中东地区。

不适合的场景:当数值字段表达的不是一个区域的总值,而仅仅是个取样值(气温、降水等)时不适合使用带气泡的地图,下图是中国气温的一个分布图。此时更适合热力图。

股价图

常用于展示股票交易数据。将各种股票每日、每周、每月的开盘价、收盘价、最高价、最低价等涨跌变化状况,用图形的方式表现出来。

如图所示:

1.最上方的一条细线称为上影线,中间的一条粗线为实体,下面的一条细线为下影线。

2.当收盘价高于开盘价,也就是股价走势呈上升趋势时,我们称这种情况下的K线为阳线,中部的实体以空白或红色表示。反之称为阴线用黑色实体或绿色表示。

3.上影线的长度表示最高价和收盘价之间的价差,实体的长短代表收盘价与开盘价之间的价差,下影线的长度则代表开盘价和最低价之间的差距。

适合场景:下图展示了“湖南天雁”股票年1月5日至年11月19日的日K线图。

曲面图

曲面图实际上是折线图和面积图的另一种形式,其有3个轴,分别代表分类、系列和数值由面图通过跨两维(分类和系列)的曲面图形来表示数据的变化趋势,曲面图形的颜色与图等表其取值范围。

适合场景:在地图上,用颜色和图来表示某个海拔高度范围。通过拖放曲面图的坐标可以方便地变换观察图表的角度。

雷达图

雷达又叫戴布拉图、蜘蛛网图。传统的雷达图被认为是一种表现多维(4维以上)数据的图表。它将多个维度的数据量映射到坐标轴上,这些坐标轴起始于同一个圆心点,通常结束于圆周边缘,将同一组的点使用线连接起来就称为了雷达图。

虽然雷达图每个轴线都表示不同维度,但使用上为了容易理解和统一比较。使用雷达图经常会人为的将多个坐标轴都统一成一个度量,比如:统一成分数、百分比等。雷达图还可以展示出数据集中各个变量的权重高低情况,非常适用于展示性能数据。

雷达图的主要缺点是:

(1)如果雷达图上多边形过多会使可读性下降,使整体图形过于混乱。特别是有颜色填充的多边形的情况,上层会遮挡覆盖下层多边形。

(2)如果变量过多,也会造成可读性下降,因为一个变量对应一个坐标轴,这样会使坐标轴过于密集,使图表给人感觉很复杂。所以最佳实践就是尽可能控制变量的数量使雷达图保持简单清晰。

树状图

树状图全称为矩形式树状结构图,可以实现层次结构可视化的图表结构,以便用户轻松地发现不同系列之间、不同数据之间的大小关系。

矩形树图由马里兰大学教授BenShneiderman于上个世纪90年代提出,起初是为了找到一种有效了解磁盘空间使用情况的方法。矩形树图适合展现具有层级关系的数据,能够直观体现同级之间的比较。

矩形树图的好处在于,相比起传统的树形结构图,矩形树图能更有效地利用空间,并且拥有展示占比的功能。矩形树图的缺点在于,当分类占比太小的时候文本会变得很难排布。相比起分叉树图,矩形树图的树形数据结构表达得不够直观、明确。

适合场景:下图是年手机品牌及其下属手机型号的销量信息。

不适合场景:没有权重关系,且需要明显展示层级关系,用分叉树图更合适。

旭日图

旭日图是一种现代饼图,它超越传统的饼图和环图,能表达清晰的层级和归属关系,以父子层次结构来显示数据构成情况。旭日图中,离远点越近表示级别越高,相邻两层中,是内层包含外层的关系。

适合场景:如下图运用旭日图展现各国的获奖数据,旭日图能便于细分溯源分析数据,通过分层占比情况真正了解数据的具体构成。 

直方图

直方图,形状类似柱状图却有着与柱状图完全不同的含义。直方图牵涉统计学的概念,首先要对数据进行分组,然后统计每个分组内数据元的数量。

在平面直角坐标系中,横轴标出每个组的端点,纵轴表示频数,每个矩形的高代表对应的频数,称这样的统计图为频数分布直方图。频数分布直方图需要经过频数乘以组距的计算过程才能得出每个分组的数量,同一个直方图的组距是一个固定不变的值,所以如果直接用纵轴表示数量,每个矩形的高代表对应的数据元数量,既能保持分布状态不变,又能直观的看出每个分组的数量。

适合场景:下图绘制了钻石的全深比数据的统计直方图,从图中可以看出在66附近有两个孤立值。

不适合的场景:抽取的样本数量过小,将会产生较大误差,可信度低,也就失去了统计的意义。因此,样本数不应少于50个。

箱形图

箱形图又称盒须图、盒式图或箱线图,是一种用作显示一组数据分布情况的统计图。

如果一个数据集中包含了一个分类变量和一个或者多个连续变量,那么你可能会想知道连续变量会如何随着分类变量水平的变化而变化,而箱形图就可以提供这种方法,它只用了5个数字对分布进行概括,即一组数据的最大值、最小值、中位数、下四分位数及上四分位数。对于数据集中的异常值,通常会以单独的点的形式绘制。箱形图可以水平或者垂直绘制。

箱形图多用于数值统计,虽然相比于直方图和密度曲线较原始简单,但是它不需要占据过多的画布空间,空间利用率高,非常适用于比较多组数据的分布情况。

适合的场景:我们用箱形图将不同种类的鸢尾花的花萼和花瓣的长度、宽度数据展示出来,同时我们还可以比较不同品种间花瓣和萼片数据是如何变化的。

瀑布图

瀑布图有助于理解依次引入正值或负值的累积效应。瀑布图也被称为飞行砖图或马里奥图,因为看起来像悬挂在空中的砖头。

瀑布图通常用于了解初始值如何受到一系列中间正值或负值的影响。

适合的场景:瀑布图具有自上而下的流畅效果,在企业经营分析、财务分析中使用较多,用以表示企业成本的构成、变化等情况。

漏斗图

漏斗图适用于业务流程比较规范、周期长、环节多的单流程单向分析,通过漏斗各环节业务数据的比较能够直观地发现和说明问题所在的环节,进而做出决策。漏斗图用梯形面积表示某个环节业务量与上一个环节之间的差异。漏斗图从上到下,有逻辑上的顺序关系,表现了随着业务流程的推进业务目标完成的情况。

漏斗图总是开始于一个%的数量,结束于一个较小的数量。在开始和结束之间由N个流程环节组成。每个环节用一个梯形来表示,梯形的上底宽度表示当前环节的输入情况,梯形的下底宽度表示当前环节的输出情况,上底与下底之间的差值形象的表现了在当前环节业务量的减小量,当前梯形边的斜率表现了当前环节的减小率。

通过给不同的环节标以不同的颜色,可以帮助用户更好地区分各个环节之间的差异。漏斗图的所有环节的流量都应该使用同一个度量。

适合场景:适用于流程流量分析。随着流程的推进,每个环节所要达成的成功数量在减少。最终的成交量是企业想要达成的交易数量。通过将各个流程中数量的信息画入漏斗图可以清晰的分析到哪个环节是当前业务流程中的薄弱环节,哪个环节是流量转化的瓶颈,进而帮助人们更加专注于薄弱环节提高整个流程的产出。

不适合的场景:漏斗图不适合表示无逻辑顺序的分类对比,如果要表示无逻辑顺序的分类对比情况,请使用柱状图。漏斗图也不适合表示占比情况,如果要表示占比情况,请使用饼图。

下图是一个游戏销量的图表,展示不同游戏类型的销量对比,用柱状图合适,用漏斗图不合适。

以上就是今天分享的全部内容,我们下期见!

转载请注明:
http://www.3g-city.net/gjyzz/1405.html
  • 上一篇文章:

  • 下一篇文章:
  • 网站首页 版权信息 发布优势 合作伙伴 隐私保护 服务条款 网站地图 网站简介

    温馨提示:本站信息不能作为诊断和医疗依据
    版权所有2014-2024 冀ICP备19027023号-6
    今天是: